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Abstract: 18 

Decision-making is a core cognitive function that enables adaptive behavior across diverse 19 

contexts. While extensively studied in wakefulness, its persistence and reconfiguration across 20 

sleep states remain poorly understood. Here, we use computational modeling to examine 21 

lexical decision-making across wakefulness, N1 sleep, and lucid REM sleep in both healthy 22 

participants (HP) and participants with narcolepsy (NP). Using facial electromyography 23 

(EMG) to capture real-time behavioral responses to spoken words and pseudowords during 24 

sleep, we quantify how decision-making strategies adapt under different sleep and 25 

consciousness states. Our findings reveal two key insights. First, decision-making 26 

mechanisms are dynamically reconfigured across sleep states. In N1 sleep, the advantage for 27 

word (vs. pseudoword) judgments is supported by faster sensory encoding and motor 28 

preparation, combined with efficient evidence accumulation. In contrast, in lucid REM sleep, 29 

the word advantage is driven exclusively by enhanced evidence accumulation, while sensory 30 

encoding and motor preparation remain unchanged. Second, cross-state comparisons reveal 31 

distinct patterns of preservation and impairment. In N1 sleep, word judgment remains largely 32 

intact, whereas pseudoword judgment is significantly impaired, characterized by prolonged 33 

stimulus encoding, delayed motor preparation, and reduced evidence accumulation. In 34 

contrast, lucid REM sleep is marked by a global reduction in processing efficiency, reflected 35 

in slower evidence accumulation and elevated decision thresholds for both words and 36 

pseudowords. These results demonstrate that rather than being uniformly degraded, decision-37 

making is dynamically reconfigured across sleep stages, reflecting adaptive neurocognitive 38 

strategies that sustain cognition in altered states of consciousness. By identifying state-39 

specific computational mechanisms, this study provides new insights into the brain’s 40 

resilience and flexibility under changing cognitive and physiological conditions. 41 
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 44 

Introduction 45 

Decision-making is core for human cognition, supporting individuals to adaptively navigate 46 

complex environments. While decision-making during wakefulness has been extensively 47 

studied, how the brain supports this process during sleep remains poorly understood. Sleep is 48 

increasingly recognized as an active cognitive state, during which the brain continues to 49 

process sensory information, acquire and consolidate memories, and even engage in goal-50 

directed behaviour (Andrillon et al., 2016; Arzi et al., 2012; Konkoly et al., 2021; Türker et 51 

al., 2023; Xia et al., 2024). Despite these intriguing findings (Konkoly et al., 2021; Türker et 52 

al., 2023), the computational mechanisms that enable decision-making to persist and adapt 53 

under the distinct sleep states remain unclear. Here, leveraging unique data involving lexical 54 

decision makings during sleep and lucid dreaming (Türker et al., 2023), we investigated how 55 

sleeping minds reconfigure its computational strategies across wakefulness and different 56 

sleep states. By uncovering the computational mechanisms underlying decision-making 57 

during sleep, our findings provide novel insights into how cognitive processes are 58 

dynamically restructured across altered states of consciousness. 59 

Sleep is not a uniform state but a progression through distinct neural stages, each imposing 60 

unique constraints on cognitive processing. In N1 sleep, the transition from wakefulness is 61 

gradual; sensory processing remains partially intact, allowing recognition of familiar stimuli, 62 

but higher-order cognitive functions are reduced (Andrillon et al., 2016; Blume et al., 2017; 63 

Lacaux et al., 2024; Wislowska et al., 2022). As sleep deepens into N2 and N3, slow-wave 64 

activity increases, thalamocortical connectivity diminishes, and responsiveness to external 65 

stimuli further declines, with the brain prioritizing endogenous memory consolidation 66 

(Diekelmann & Born, 2010; Massimini, 2005; Strauss et al., 2015). In contrast, REM sleep—67 

often referred to as "paradoxical sleep"—is characterized by wake-like cortical activity and 68 

vivid dreaming experiences (Brown et al., 2012; Hobson & Friston, 2012). A particularly 69 

intriguing phenomenon is lucid REM sleep, in which individuals become aware that they are 70 

dreaming and can even exert voluntary control over dream content (Filevich et al., 2015; 71 

Voss et al., 2014; Zerr et al., 2024). This state represents a unique hybrid of internally 72 

generated cognition and externally responsive awareness, bridging the gap between sleep and 73 

wakefulness and offering a powerful model for experimentally probing cognitive processes 74 

during sleep. 75 

A recent study demonstrated that individuals in lucid REM sleep can perceive and respond to 76 

questions presented by an experimenter in real time, using predefined eye movements (EOG) 77 

or facial muscle contractions (EMG) (Konkoly et al., 2021). Moreover, EMG-based lexical 78 

decision tasks—where individuals distinguish words from pseudowords by contracting facial 79 

muscles—have revealed that lexical decision-making remains possible throughout different 80 

sleep states, including lucid REM sleep (Türker et al., 2023). These findings provide key 81 

evidence that the sleeping minds remain a remarkable ability not only to process external 82 

stimuli but also to engage in higher-level cognitive functions, such as lexical judgments. 83 

However, the computational mechanisms underlying decision-making across different sleep 84 

states remain poorly understood, requiring further investigation. 85 

To address this question, we employed drift diffusion modelling (DDM), a computational 86 

framework widely used to quantify the cognitive processes underlying decision-making 87 
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(Ratcliff et al., 2004, 2016). The DDM conceptualizes decision-making as the gradual 88 

accumulation of noisy sensory evidence until a decision threshold is reached (Myers et al., 89 

2022). Key parameters include the drift rate: how efficiently evidence is accumulated; the 90 

non-decision time: the time needed for sensory encoding, motor preparation, and other non-91 

decisional processes; and the decision threshold: the amount of evidence required to make a 92 

decision, reflecting the trade-off between speed and accuracy. Prior studies have shown that 93 

differences in lexical decision-making—such as distinguishing words from pseudowords—94 

are primarily driven by drift rate and non-decision times (Donkin et al., 2009; Ratcliff et al., 95 

2004). However, to account for potential variations in decision-making strategies across 96 

wakefulness and sleep, we also included the decision threshold (a) in our model. Adjustments 97 

to the decision threshold are particularly important in contexts like sleep, where individuals 98 

must navigate the trade-off between speed and accuracy (Ratcliff et al., 2004; Ratcliff & 99 

McKoon, 2008). By applying DDM to EMG-measured muscle responses during a lexical 100 

decision task, we quantified how these parameters shift across wakefulness, light NREM 101 

sleep, and lucid REM sleep, revealing the computational trade-offs that sustain decision-102 

making under altered sleep states. 103 

To gain deeper insight into how decision-making adapts across sleep states, we studied 104 

participants with narcolepsy, a condition characterized by unstable sleep-wake transitions and 105 

frequent lucid dreams (Baird et al., 2019; Dodet et al., 2015; Mota-Rolim & Araujo, 2013). 106 

Because individuals with narcolepsy often experience heightened dream awareness and 107 

control, this condition provides a unique natural model for investigating decision-making in 108 

lucid REM sleep. Participants completed a lexical decision task during both wakefulness and 109 

sleep, allowing us to examine how cognitive processes adapt across altered states of 110 

consciousness. Our findings reveal that core cognitive components—such as non-decition 111 

times, evidence accumulation, and decision thresholds—are not simply degraded during 112 

sleep. Instead, they are dynamically reconfigured, highlighting the brain’s remarkable ability 113 

to sustain cognition despite shifting cognitive states. 114 

 115 

Results 116 

We first investigated the computational mechanisms underlying lexical decision-making 117 

across wakefulness, N1, N2, non-lucid REM, and lucid REM sleep. Using DDM, we 118 

examined how these mechanisms adapt across sleep states to determine how sleep alters 119 

decision-making processes. Specifically, we assessed behavioural performance—measuring 120 

reaction times (RTs) and accuracy—as well as computational parameters derived from DDM: 121 

non-decision time (reflecting sensory encoding and motor preparation), drift rate (reflecting 122 

the efficiency of evidence accumulation), and decision threshold (reflecting decision caution). 123 

By comparing these parameters across states, we aimed to determine the extent to which 124 

lexical decision-making is preserved, impaired, or reconfigured during different sleep states. 125 

Lexical decision-making during wakefulness 126 

To establish a baseline for decision-making processes, we first examined lexical decision-127 

making during wakefulness. As expected, participants responded faster to words than 128 

pseudowords, reflecting more efficient linguistic processing. 129 
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Among healthy participants (HP), RTs were significantly faster for words compared to 130 

pseudowords (mediandiff = -0.171, 95% HDI [-0.221, -0.126], Figure 2A right), while 131 

accuracy differences were not significant (mediandiff = -0.116, 95% HDI [-0.485, 0.243], 132 

Figure 2A left). DDM revealed that the RT advantage for words was driven by shorter non-133 

decision times (mediandiff = -0.106, 95% HDI [-0.149, -0.061], Figure 2C), reflecting efficient 134 

stimulus encoding and motor preparation. Drift rates (evidence accumulation) and decision 135 

thresholds (decision caution) were similar for words and pseudowords (all 95% HDIs 136 

overlapped with 0, Figure 2C, 2E). 137 

In contrast, individual with narcolepsy (NP) exhibited abnormal lexical decision-making 138 

patterns. While RTs were faster for words than pseudowords (mediandiff = -0.149, 95% HDI 139 

[-0.210, -0.088], Figure 2B right), accuracy was lower for words (mediandiff = -0.512, 95% 140 

HDI [-0.889, -0.135], Figure 2B left). These deficits were reflected in faster non-decision 141 

times (mediandiff = -0.101, 95% HDI [-0.156, -0.048], Figure 2D) but significantly slower 142 

drift rates (mediandiff = -0.184, 95% HDI [-0.388, -0.001], Figure 2F) for words, suggesting 143 

impaired evidence accumulation. Decision thresholds were comparable across words and 144 

pseudowords (all 95% HDIs overlapped with 0, Figure 2G, 2H). 145 

Thus, while HPs demonstrated efficient lexical decision-making during wakefulness, 146 

characterized by robust sensory encoding and motor preparation for words. NPs exhibited 147 

disrupted evidence accumulation, potentially reflecting cognitive impairments associated 148 

with narcolepsy (Naumann et al., 2006). Having established these baseline differences, we 149 

next examined how lexical decision-making is reconfigured across sleep states. 150 

State-specific mechanisms of lexical decision-making N1 and lucid REM sleep 151 

Despite transitioning into sleep, participants retained the ability to make lexical decisions 152 

during both N1 sleep and lucid REM sleep, as indicated by faster and more accurate 153 

responses to words than pseudowords (see below). However, the mechanisms underlying this 154 

word advantage differed between these states. 155 

In N1 sleep, RTs were significantly faster for words compared to pseudowords in both HPs 156 

(mediandiff = -0.390, 95% HDI [-0.575, -0.208], Figure S2A right) and NPs (mediandiff = -157 

0.160, 95% HDI [-0.265, -0.058], Figure 3A right). Accuracy was also higher for words than 158 

pseudowords in both groups (HP: mediandiff = 1.571, 95% HDI [0.479, 2.783], Figure S2A 159 

left; NP: mediandiff = 0.604, 95% HDI [0.107, 1.113], Figure 3A left). In lucid REM sleep, 160 

participants with narcolepsy similarly showed faster RTs (mediandiff = -0.169, 95% HDI [-161 

0.281, -0.051], Figure 3B right) and higher accuracy (mediandiff = 0.674, 95% HDI [0.186, 162 

1.161], Figure 3B left) for words compared to pseudowords. These findings indicate that 163 

lexical decision-making remains functional in both states. 164 

To uncover the mechanisms underlying lexical decisions during N1 and lucid REM sleep, we 165 

applied drift diffusion modelling. The results revealed distinct mechanisms supporting the 166 

word advantage in each state. In N1 sleep, the word advantage was driven by shorter non-167 

decision times for words than pseudowords, reflecting more efficient sensory encoding and 168 

motor preparation in HPs (mediandiff = -0.213, 95% HDI [-0.367, -0.062], Figure S2B) and 169 

NPs (mediandiff = -0.098, 95% HDI [-0.188, -0.001], Figure 3C). Additionally, higher drift 170 

rate for words than pseudowords in HPs (mediandiff = 0.732, 95% HDI [0.105, 1.433], Figure 171 

S2C) and NPs (mediandiff = 0.308, 95% HDI [0.018, 0.589], Figure 3E), suggest enhanced 172 
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evidence accumulation, facilitating more efficient lexical decision-making in both groups. 173 

Importantly, decision thresholds did not differ between words and pseudowords in both 174 

groups (all 95% HDIs overlapped with 0, Figure 3G, Figure S2E), indicating stable decision 175 

threshold across stimuli. These findings suggest that lexical decisions in N1 sleep were 176 

supported by preserved sensory encoding and motor preparation, along with efficient 177 

evidence accumulation. 178 

In lucid REM sleep, the word advantage was primarily supported by higher drift rates for 179 

words than pseudowords (mediandiff = 0.274, 95% HDI [0.015, 0.543], Figure 3F), indicating 180 

selective improvements in evidence accumulation for words. Unlike N1 sleep, non-decision 181 

times and decision thresholds did not differ between words and pseudowords (all 95% HDIs 182 

overlapped with 0, Figure 3 DH), suggesting that sensory encoding and motor preparation, 183 

along with decision threshold were stable across stimulus types during lucid REM sleep. 184 

These findings suggest that lexical decisions in lucid REM sleep relied predominantly on 185 

selective improvements in evidence accumulation for words, rather than changes in non-186 

decision times or decision caution. 187 

Together, lexical decision-making in N1 and lucid REM sleep relied on distinct 188 

computational strategies. In N1 sleep, faster responses and higher accuracy were supported 189 

by both faster sensory encoding, motor preparation, and more efficient evidence 190 

accumulation. In lucid REM sleep, the word advantage was primarily driven by enhanced 191 

evidence accumulation, while sensory encoding, motor preparation, and decision caution 192 

remained unchanged. 193 

Absence of lexical decision-making in N2 and non-lucid REM sleep 194 

In contrast to N1 and lucid REM sleep, participants were unable to distinguish between 195 

words and pseudowords in N2 and non-lucid REM sleep. There were no significant 196 

differences in RTs, accuracy, or any decision-making parameters (drift rates, non-decision 197 

times, or decision thresholds) between words and pseudowords (all 95% HDIs overlapped 198 

with 0, Figure S3). These findings indicate that lexical decision-making mechanisms are 199 

functionally absent in these deeper sleep states, likely reflecting reduced sensory processing 200 

and diminished cognitive engagement. 201 

Dynamic reconfiguration of lexical decision-making across wakefulness, N1 sleep, and 202 

lucid REM sleep 203 

Having established that word judgments in N1 and lucid REM sleep rely on distinct 204 

computational mechanisms, we next examine how lexical decision-making adapts across 205 

wakefulness, N1 sleep, and lucid REM sleep. By integrating both behavioural performance 206 

and computational modelling, we identified gradual yet distinct changes in sensory encoding, 207 

motor preparation, evidence accumulation, and decision caution across these states, using 208 

wakefulness as a baseline for optimal performance.  209 

Wakefulness vs. N1 Sleep: robust word processing and impaired pseudoword 210 

processing 211 

To examine how N1 sleep reconfigures decision-making processes for lexical decisions, we 212 

compared behavioural and computational results between wakefulness and N1 sleep in both 213 
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HP and NP groups. The findings revealed a selective preservation of word processing, while 214 

pseudoword judgments were significantly impaired. 215 

For words, RTs (mediandiff = 0.020, 95% HDI [-0.106, 0.148]), and accuracy (mediandiff = -216 

0.163, 95% HDI [-1.216, 0.765]) were comparable between wakefulness and N1 sleep, 217 

suggesting word judgment during N1 sleep remained stable. DDM confirmed that non-218 

decision times, drift rate, and decision threshold for words did not significantly differ 219 

between wakefulness and N1 sleep (all 95% HDIs overlapped with 0, Figure 4A, 4B, 4C), 220 

suggesting that semantic networks supporting word judgment remained intact during N1 221 

sleep. 222 

In contrast, pseudoword judgment was significantly impaired during N1 sleep. RTs were 223 

slower (mediandiff = -0.199, 95% HDI [-0.345, -0.057]), and accuracy was lower (mediandiff = 224 

1.519, 95% HDI [0.823, 2.236]), reflecting greater difficulty in processing novel or 225 

ambiguous stimuli during N1 sleep. DDM revealed that this impairment was driven by slower 226 

non-decision times (mediandiff = -0.120, 95% HDI [-0.215, -0.009], Figure 4D) and lower 227 

drift rate (mediandiff = 0.630, 95% HDI [0.074, 1.115], Figure 4E), while the decision 228 

threshold remained unchanged between wakefulness and N1 sleep (95%HDI overlapped with 229 

0, Figure 4F).  230 

A similar pattern was observed in the NP group, where pseudoword processing exhibited a 231 

significantly slower drift rate compared to wakefulness (mediandiff = -0.468, 95% HDI [-232 

0.688, -0.252]), while non-decision times and decision thresholds remained unchanged (all 233 

95% HDIs overlapped with 0). However, as with HPs, word processing remained stable 234 

across wakefulness and N1 sleep, with no significant differences in non-decision times, drift 235 

rates, or decision thresholds (all 95% HDIs overlapped with 0). 236 

These findings suggest that while lexical representations remain accessible during N1 sleep, 237 

decisions requiring phonological decoding and inhibitory control (e.g., pseudowords) are 238 

disproportionately affected, likely due to sleep-related reductions in cognitive resources. The 239 

similarity of this pattern across both groups supports the idea that familiar word judgment is 240 

preserved during N1 sleep, whereas processing novel or ambiguous stimuli becomes less 241 

efficient due to state-dependent cognitive constraints. 242 

 243 

Lucid REM sleep vs. wakefulness and N1 sleep: slower and less efficient lexical 244 

decisions 245 

Building on these observations, we next examined how lucid REM sleep reconfigured 246 

decisional processing to perform lexical decision relative to wakefulness and N1 sleep. 247 

Unlike N1 sleep, where word processing remained largely intact, lucid REM sleep was 248 

associated with global reductions in processing efficiency. 249 

Participants exhibited slower RTs across both stimulus types during lucid REM sleep. For 250 

words, RTs were significantly slower compared to wakefulness (mediandiff = 0.242, 95% HDI 251 

[0.141, 0.344]) and N1 sleep (mediandiff = 0.185, 95% HDI [0.075, 0.308]). A similar pattern 252 

was observed for pseudowords, with RTs significantly slower compared to wakefulness 253 

(mediandiff = 0.261, 95% HDI [0.161, 0.366]) and N1 sleep (mediandiff = 0.195, 95% HDI 254 

[0.080, 0.312]). 255 
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Despite the generalized slowing, accuracy patterns differed between stimulus types. Word 256 

accuracy remained stable, showing no significant differences compared to wakefulness 257 

(mediandiff = -0.418, 95% HDI [-0.916, 0.045]) or N1 sleep (mediandiff = -0.474, 95% HDI [-258 

1.011, 0.088]). In contrast, pseudoword accuracy was significantly impaired during lucid 259 

REM sleep, with lower accuracy compared to wakefulness (mediandiff = -1.607, 95% HDI [-260 

2.087, -1.129]) and N1 sleep (mediandiff = -0.549, 95% HDI [-1.030, -0.059]). These findings 261 

suggest that while participants retained access to words, their ability to process pseudowords 262 

was selective impaired in lucid REM sleep. 263 

DDM revealed that lexical decision-making in lucid REM sleep was characterized by reduced 264 

evidence accumulation and increased decision caution. Drift rates were significantly lower 265 

for both words and pseudowords, indicating diminished processing efficiency (words: 266 

mediandiff = -0.349, 95% HDI [-0.660, -0.023]; pseudowords: mediandiff = -0.806, 95% HDI [-267 

1.072, -0.544], Figure 5B, 5D) compared to wakefulness. A similar reduction in drift rate was 268 

observed when comparing lucid REM sleep to N1 sleep, with lower values for both words 269 

(mediandiff = -0.372, 95% HDI [-0.754, -0.014]) and pseudowords (mediandiff = -0.341, 95% 270 

HDI [-0.635, -0.056], Figure 5B, 5D).  271 

In addition to slower evidence accumulation, participants exhibited elevated decision 272 

thresholds for both words and pseudowords, suggesting that participants adopted a more 273 

cautious decision-making strategy, likely as compensation for reduced processing efficiency. 274 

Thresholds were significantly higher in lucid REM sleep compared to wakefulness (words: 275 

mediandiff = 0.684, 95% HDI [0.259, 1.149]; pseudowords: mediandiff = 0.453, 95% HDI 276 

[0.102, 0.775], Figure 5C, 5F) and N1 sleep (words: mediandiff = 0.578, 95% HDI [0.067, 277 

1.075]; pseudowords: mediandiff = 0.599, 95% HDI [0.261, 0.949], Figure 5C, 5F). Despite 278 

these changes, non-decision times remained stable across wakefulness, N1 sleep, and lucid 279 

REM sleep (all 95% HDIs overlapped with 0, Figure 5A, 5D), indicating that stimulus 280 

encoding and response preparation were preserved across states.  281 

Together, these findings reveal a progressive shift in lexical decision-making across 282 

wakefulness, N1 sleep, and lucid REM sleep. While N1 sleep preserved word judgment but 283 

impaired pseudoword processing, lucid REM sleep was associated with a generalized 284 

reduction in processing efficiency. Participants compensated for this inefficiency by adopting 285 

a more cautious decision-making strategy, reflected in elevated decision thresholds. 286 

Importantly, non-decision times remained stable across all states, suggesting that stimulus 287 

encoding and motor preparation were preserved despite changes in decision-making 288 

efficiency. 289 

 290 

Discussion 291 

This study investigated how lexical decision-making processes adapt across distinct states of 292 

consciousness—wakefulness, N1 sleep, and lucid REM sleep—by integrating behavioural 293 

data and computational modelling with the drift diffusion model. Analyzing key decision 294 

parameters—non-decision times, drift rates, and decision thresholds—revealed state-specific 295 

adaptations in decision-making and how they dynamically reconfigure across states of 296 

consciousness. Our findings indicate that N1 sleep preserves both non-decision processes 297 

(sensory encoding and motor preparation) and evidence accumulation (drift rate) to support 298 
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lexical decisions, whereas lucid REM sleep relies primarily on evidence accumulation. 299 

Notably, decision-making exhibited a progressive shift across states: while N1 sleep 300 

maintained efficient word judgments, it showed selective impairments in pseudoword 301 

judgments, reflected in prolonged non-decision times and slower drift rate. In contrast, lucid 302 

REM sleep exhibited a generalized decline in decision-making efficiency, characterized by 303 

reduced drift rates and elevated decision thresholds for both words and pseudowords. These 304 

results suggest that the brain dynamically reallocates cognitive resources to sustain task 305 

performance under the distinct state of consciousness. 306 

Although wakefulness served as our baseline, its lexical decision-making profile revealed 307 

notable deviations from prior findings, particularly regarding the mechanisms underlying the 308 

word advantage. While past research suggests that both drift rate and non-decision time 309 

contribute to faster word responses (Donkin et al., 2009; Ratcliff et al., 2004; Wagenmakers 310 

et al., 2008), our results indicate that this advantage in wakefulness was driven solely by non-311 

decision time, with no drift rate differences between words and pseudowords. This 312 

discrepancy may stem from the spoken auditory lexical decision task, as auditory word 313 

recognition relies more on incremental phonological encoding and feedforward activation 314 

rather than rapid evidence accumulation (Hickok & Poeppel, 2007; Marslen-Wilson, 1987). 315 

Unlike visual word recognition, which engages orthographic feedback and lexical 316 

competition (Coltheart et al., 2001; Wagenmakers et al., 2008), spoken word processing 317 

unfolds over time, potentially diminishing the role of drift rate. Additionally, NPs exhibited 318 

slower response times, reduced accuracy, and lower drift rates, consistent with prior evidence 319 

that orexinergic dysfunction disrupts wake-state stability and cognitive vigilance (Dauvilliers 320 

et al., 2007; Scammell, 2015). These wakefulness-specific differences underscore the 321 

importance of considering baseline cognitive variability when interpreting sleep-related 322 

effects. 323 

The ability to perform lexical decisions during N1 sleep indicates that the transition from 324 

wakefulness to light sleep does not lead to a complete shutdown of higher-order cognition. 325 

Instead, the brain retains functional connectivity and sufficient computational capacity to 326 

process external stimuli, particularly those with strong semantic or lexical associations 327 

(Andrillon et al., 2016; Kouider et al., 2014; Siclari & Tononi, 2017). Both HPs and NPs 328 

preserved the word advantage, characterized by shorter non-decision times and higher drift 329 

rates for words. This suggests that familiar, meaningful stimuli continue to benefit from 330 

efficient sensory encoding and robust evidence accumulation even in early sleep states 331 

(Andrillon & Kouider, 2020; Perrin et al., 1999; Portas et al., 2000). These findings align 332 

with theories proposing that N1 sleep retains partial access to the global workspace, allowing 333 

meaningful stimuli to penetrate higher-order cognitive systems (Dehaene & Changeux, 334 

2011). 335 

Lucid REM sleep exhibited a distinct lexical decision-making profile, fundamentally 336 

diverging from both wakefulness and N1 sleep. Unlike N1 sleep, where both early-stage 337 

processing (non-decision time) and evidence accumulation (drift rate) contributed to lexical 338 

decision, decision-making in lucid REM sleep relied solely on evidence accumulation. The 339 

absence of non-decision time modulation suggests that sensory encoding and motor 340 

preparation are no longer limiting factors, likely reflecting the altered neural dynamics of 341 

lucidity (Dresler et al., 2015; Voss et al., 2014). Lucid dreaming is associated with increased 342 

prefrontal activity and enhanced metacognition, which may enable participants to engage in 343 
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goal-directed tasks despite the atypical sensory environment (Filevich et al., 2015). In this 344 

state, external stimuli may be processed less efficiently, forcing lexical decisions to depend 345 

entirely on post-sensory evidence accumulation. These findings suggest that lucidity induces 346 

a computational reconfiguration of decision-making, demonstrating how cognitive processes 347 

can adapt to hybrid states of consciousness characterized by partial reinstatement of executive 348 

control within a modified sensory landscape. 349 

Having established state-specific effects, we also compared lexical decision-making between 350 

wakefulness and N1 sleep to examine how the sleeping brain adapts decision strategies. 351 

Despite overall slowing in N1 sleep, lexical decisions for words remained relatively 352 

preserved, likely due to the robustness of semantic memory networks, which enable rapid 353 

access to familiar word representations with minimal cognitive effort (Andrillon et al., 2016; 354 

Hickok & Poeppel, 2007). Automatic retrieval of well-established meanings requires minimal 355 

cognitive control, making it more resistant to sleep-related impairments. In contrast, lexical 356 

decisions for pseudowords were selectively impaired, as reflected in slower response times, 357 

lower accuracy, prolonged non-decision times, and reduced evidence accumulation. Unlike 358 

words, pseudowords lack semantic associations and require greater bottom-up sensory 359 

encoding and cognitive flexibility, which are particularly vulnerable to the 360 

neurophysiological constraints of sleep (Andrillon & Kouider, 2020). The prolonged non-361 

decision times observed for pseudowords further suggest inefficiencies in early-stage 362 

processing. This pattern reveals a hierarchical prioritization of cognitive resources, where the 363 

brain maintains efficient processing for familiar, meaningful stimuli while deprioritizing 364 

resource-intensive operations. 365 

Lexical decision-making in lucid REM sleep among narcolepsy participants was marked by 366 

slower evidence accumulation (drift rate) and elevated decision thresholds compared to 367 

wakefulness, reflecting the cognitive demands of this altered state. Narcolepsy is 368 

characterized by intrusive REM features, including heightened internal imagery, dream-like 369 

mentation, and dysregulated arousal states (Dauvilliers et al., 2007; Voss et al., 2014), which 370 

likely compete with external stimuli for cognitive resources, thereby introducing cognitive 371 

noise and reducing the efficiency of evidence accumulation. To compensate for this increased 372 

uncertainty, participants adopted a more cautious decision strategy, setting higher decision 373 

thresholds to mitigate errors (Forstmann et al., 2016; Ratcliff et al., 2016). Despite these 374 

adjustments, non-decision times remained stable, indicating that sensory encoding and motor 375 

preparation were preserved, even as evidence accumulation became less efficient.  376 

Unlike N1 and lucid REM sleep, participants exhibited no evidence of lexical decision-377 

making during N2 or non-lucid REM sleep in either group. Behavioural and computational 378 

analyses revealed no significant differences between words and pseudowords, suggesting that 379 

higher-order cognitive functions and evidence accumulation were absent in these states. This 380 

aligns with research indicating that deeper sleep states, such as N2 and REM, involve reduced 381 

thalamocortical connectivity and sensory disconnection, restricting processing to lower-level 382 

sensory areas with limited capacity for decision-related computations (Andrillon & Kouider, 383 

2020; Nir et al., 2011). However, this finding contrasts with Türker et al. (2023), who 384 

reported above-chance responses to verbal stimuli across all sleep states, including N2 and 385 

REM. One explanation for this discrepancy is that while participants in Türker et al. (2023) 386 

may have exhibited stimulus-driven motor responses, our drift diffusion modelling suggests 387 

that these responses were not indicative of true lexical decision-making. Instead, they likely 388 
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reflect automatic sensory-motor processing, such as priming effects or residual auditory-389 

motor coupling, which can persist in deep sleep despite the absence of volitional decision 390 

processes (Andrillon et al., 2016; Kouider et al., 2014). This interpretation reinforces the idea 391 

that higher-order linguistic operations require a minimal level of wake-like cortical 392 

integration, which may be present in N1 and lucid REM but absent in N2 and non-lucid REM 393 

sleep.  394 

By integrating behavioural and computational approaches, this study provides a new 395 

framework for studying high-order cognition beyond wakefulness, offering insights into how 396 

the brain maintains residual cognitive functions in altered states of consciousness. While our 397 

Bayesian and DDM analyses accounted for unbalanced trial conditions, future studies with 398 

larger sample sizes and overnight paradigms could further enhance statistical power (Ratcliff 399 

et al., 2016). Additionally, our investigation of lucid REM sleep was limited to participants 400 

with narcolepsy, raising questions about the generalizability of these effects to healthy 401 

individuals (Baird et al., 2019). Future studies using high-density EEG or neuroimaging 402 

could further elucidate the neural mechanisms underlying sleep-based decision-making. 403 

These findings have broad implications for sleep’s role in cognition, the nature of conscious 404 

processing across vigilance states, and the neural mechanisms that shape decision-making 405 

under varying levels of arousal and awareness.  406 

 407 

Methods 408 

This study presents a novel analysis of data originally collected in 2020 at the Sleep Clinic of 409 

Pitié-Salpêtrière Hospital, France, as part of an experiment previously published (Türker et 410 

al., 2023). The study adhered to the Declaration of Helsinki, and ethical approval was granted 411 

by the local ethics committee (CPP Ile-de-France 8). All participants provided written 412 

informed consent before participation. 413 

Thirty individuals diagnosed with narcolepsy (NP; 14 women; mean age: 35 ± 11 years) and 414 

22 healthy participants (HP; 10 women; mean age: 24 ± 4 years) were recruited. Participants 415 

with narcolepsy were diagnosed according to international diagnostic criteria and recruited 416 

from the National Reference Center for Narcolepsy at the Pitié-Salpêtrière Hospital. Among 417 

NPs, 80% reported frequent lucid dreaming (≥3 lucid dreams per week), whereas none of 418 

the HPs reported a history of lucid dreaming. Three participants (two NPs and one HP) were 419 

excluded due to technical issues during data acquisition, leaving 27 NPs (21 frequent lucid 420 

dreamers) and 21 HPs in the final analyses. Participants were compensated financially for 421 

their involvement. For detailed demographic and clinical information, see the previously 422 

published study (Türker et al., 2023). 423 

Experimental design 424 

Task Overview 425 

Participants performed a lexical decision task in which they determined whether auditory 426 

stimuli were real words or pseudowords. Responses were indicated via brief contractions of 427 

facial muscles: the corrugator (frowning) and zygomatic (smiling) muscles. The muscle-428 

response mappings were counterbalanced across participants. Stimuli were presented in 429 

pseudorandomized order, ensuring each stimulus was presented only once to prevent 430 
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repetition effects. Participants completed a 10-minute familiarization session before data 431 

collection to practice the task and ensure comfort with the auditory stimuli, which were 432 

played at an average volume of 48 dB and adjusted for individual audibility. 433 

Nap Protocol 434 

Participants with narcolepsy completed five 20-minute nap sessions, interspersed with 80-435 

minute breaks, while HPs completed a single uninterrupted 100-minute daytime nap. Each 436 

nap session consisted of 10 active ("ON") periods, during which six stimuli (three words, 437 

three pseudowords) were presented every 9–11 seconds against a background of continuous 438 

white noise. These "ON" periods alternated with 1-minute "OFF" intervals, during which 439 

only white noise was delivered. Across sessions, 60 stimuli (30 words, 30 pseudowords) were 440 

presented per participant, with presentation lists randomized to mitigate order effects. 441 

Stimuli 442 

Auditory stimuli were selected from the MEGALEX database (Ferrand et al., 2018) and 443 

included French words and pseudowords spoken by a female voice. Stimuli were 444 

standardized to a duration of 690 ms and controlled for frequency and emotional valence. To 445 

ensure consistency, each participant received five unique stimulus lists, randomized across 446 

nap sessions. Stimuli were delivered via speakers using Psychtoolbox in MATLAB 447 

(MathWorks), with a randomized inter-stimulus interval of 9–11 seconds. 448 

Electrophysiological recording 449 

Electrophysiological data were collected using a 10-channel EEG setup (Fp1, Fp2, Cz, C3, 450 

C4, Pz, P3, P4, O1, O2), following the international 10–20 system. Signals were referenced 451 

to the right mastoid (A2 electrode). Additional recordings included electrooculography 452 

(EOG) from two electrodes positioned to capture eye movements, electromyography (EMG) 453 

from three channels (chin muscles for sleep staging and the zygomatic and corrugator 454 

muscles to record behavioral responses), and electrocardiography (ECG) from one channel to 455 

record heart activity. All signals were recorded continuously at a sampling rate of 2,048 Hz 456 

using a Grael 4K PSG/EEG amplifier (Medical Data Technology, Compumedics). 457 

Sleep scoring and identification of lucid dream  458 

Sleep stages were scored offline by a certified sleep expert according to American Academy 459 

of Sleep Medicine guidelines (Berry et al., 2017) using Profusion (Compumedics). EEG and 460 

EOG signals were filtered between 0.3–15 Hz, EMG between 10–100 Hz, and ECG between 461 

0.3–70 Hz. Sleep stages were scored in 30-second epochs as wakefulness, N1, N2, N3, or 462 

REM sleep. Micro-arousals were defined as alpha activity lasting 3–15 seconds, with arousals 463 

exceeding 15 seconds classified as wakefulness. For REM sleep, micro-arousals were further 464 

characterized by transient increases in EMG tone. Trials containing micro-arousals were 465 

excluded from subsequent analyses. 466 

Lucid REM sleep was identified based on participants' self-reports following each nap 467 

session. If a participant reported a lucid dream, all REM epochs from that session were 468 

classified as lucid REM sleep. No HPs reported lucid dreams. 469 

Muscle Response Analysis 470 
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EMG signals were segmented into 10-second mini-epochs corresponding to sleep stages. 471 

Mini-epochs with micro-arousals were excluded. Muscle contractions were classified as valid 472 

responses if at least two consecutive contractions were detected; single contractions 473 

(twitches) were excluded as non-responses. Scoring reliability was validated by reanalyzing 474 

10% of the data with a second blinded scorer, yielding 84% agreement. 475 

Drift diffusion model analysis.  476 

To investigate the mechanisms underlying lexical decision-making across wakefulness and 477 

sleep stages, we employed the Drift Diffusion Model (DDM), a well-established framework 478 

for modeling two-choice decision-making tasks (Ratcliff et al., 2016). The DDM assumes 479 

that decisions arise from a continuous process of evidence accumulation, where sensory 480 

information about the two options (e.g., words and pseudowords) is integrated over time until 481 

a decision threshold is reached. The model decomposes behavioral data (accuracy and 482 

response times) into distinct cognitive parameters, providing insights into the underlying 483 

decision-making processes. The DDM decomposes this process into four main components: 484 

the starting point (z), which indicates a predecision bias; the nondecision time (t), which 485 

covers factors unrelated to the actual decision and is often linked to the encoding, motor 486 

execution, and lexical access in lexical tasks; the drift rate (v), which represents the speed of 487 

information accumulation; and the decision threshold (a), which indicate when enough 488 

evidence has been collected to make a decision.  489 

Previous findings suggest that differences in lexical decision behavior are primarily driven by 490 

drift rate and non-decision time (Donkin et al., 2009; Ratcliff et al., 2004). However, to 491 

account for potential variations in decision-making strategies across wakefulness and sleep, 492 

we also included decision threshold (a) in our model. This approach allowed us to examine 493 

how drift rate (v), non-decision time (t), and decision threshold (a) were modulated by word 494 

type and state of consciousness (wakefulness and sleep states). Predecision bias (starting 495 

point) was estimated at the participant level and assumed to remain constant across word type 496 

and sleep states, as our primary interest lay in the interaction between evidence accumulation, 497 

decision thresholds, and state-dependent cognitive dynamics (Donkin et al., 2009; Herz et al., 498 

2022; Ratcliff et al., 2004). Separate HDDM analyses were conducted for HP and NP to 499 

assess group-specific effects (Figure 1C). 500 

We used a Bayesian hierarchical approach with the HDDM 0.8 tool in Docker to estimate 501 

these parameters (Pan et al., 2022), assuming that participants' parameters are drawn from a 502 

shared distribution. We applied Markov Chain Monte Carlo (MCMC) sampling to generate 503 

10,000 samples, discarding the first 1,000 as burn-in. Model convergence was checked by 504 

inspecting trace plots, autocorrelation, and the Gelman–Rubin R-hat statistic (ensuring R-hat 505 

< 1.1). We applied HDDM regression analysis separately for HP and NP using the following 506 

model: 507 

𝑎, 𝑣, 𝑡 =  𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑊𝑜𝑟𝑑𝑡𝑦𝑝𝑒 + 𝛽2𝑗 ∗ 𝑆𝑙𝑒𝑒𝑝𝑠𝑡𝑎𝑔𝑒𝑠 + 𝛽3𝑗 ∗ 𝑊𝑜𝑟𝑑𝑡𝑦𝑝𝑒 ∗ 𝑆𝑙𝑒𝑒𝑝𝑠𝑡𝑎𝑔𝑒𝑠 508 

 𝑧 =  𝛽0𝑗 509 

Statistics.  510 

We only included response trials where stimuli were presented in the current study. 511 

Additionally, trials with microarousal (HP: 15%; NP: 13.6%) were excluded from the 512 
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analysis. N3 (0.07%) and REM (1%) sleep trials in HP were excluded due to insufficient trial 513 

numbers. To eliminate the possibility of random muscle contractions, we excluded trials in 514 

which participants exhibited only a single muscle contraction (HP: 0.6%; NP: 1.5%). Lastly, 515 

responses with times less than 0.69 seconds or greater than 9.9 seconds were excluded from 516 

the analysis. Moreover, outliers were excluded according to the conservative criterion of 517 

mean ± 2.5 median absolute deviation (MAD) based on RT. 518 

Our study aimed to uncover the computational processes underlying lexical decision-making 519 

across wakefulness and sleep in healthy participants (HP) and individuals with narcolepsy 520 

(NP) using the drift diffusion framework. Participants performed a lexical decision task 521 

(LDT) during wakefulness and continued the task throughout sleep, using facial muscle 522 

contractions (zygomatic and corrugator muscles) to indicate whether spoken stimuli were 523 

words or pseudowords in the French lexicon (Figure 1A). Polysomnography, along with 524 

additional EMG sensors, was used to confirm sleep stages and capture behavioral responses. 525 

This setup allowed us to collect both accuracy and RT data for lexical judgments during 526 

wakefulness and sleep. To analyze behavioral performance, we applied a Bayesian linear 527 

mixed model (BLMM) to trial-level accuracy and RT data. Fixed factors included word type 528 

(words vs. pseudowords) and sleep stages, while participants were modeled as a random 529 

factor (Figure 2). BLMM is particularly suited for analyzing hierarchical data structures, 530 

addressing individual variability and imbalances in trial numbers (Franke & Roettger, 2019; 531 

Gelman et al., 2014; Sorensen et al., 2016).  532 

The model is specified as follows: 533 

𝜇𝑗 =  𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑊𝑜𝑟𝑑𝑡𝑦𝑝𝑒 + 𝛽2𝑗 ∗ 𝑆𝑙𝑒𝑒𝑝𝑠𝑡𝑎𝑔𝑒𝑠 + 𝛽3𝑗 ∗ 𝑊𝑜𝑟𝑑𝑡𝑦𝑝𝑒 ∗ 𝑆𝑙𝑒𝑒𝑝𝑠𝑡𝑎𝑔𝑒𝑠             (1) 534 

Where 𝜇𝑗 represents either response accuracy or reaction time, and 𝑗 represents the subject. 535 

For response accuracy, we used the Bernoulli family to model the binary data. For reaction 536 

time, we employed the shifted lognormal family to appropriately model the RT data.  537 

During the analysis of reaction time, we conducted a control analysis by adding response 538 

accuracy as a fixed factor to examine whether correct or incorrect responses would show 539 

different reaction times: 540 

𝜇𝑗 =  𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑊𝑜𝑟𝑑𝑡𝑦𝑝𝑒𝑠 + 𝛽2𝑗 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝛽3𝑗 ∗ 𝑆𝑙𝑒𝑒𝑝𝑠𝑡𝑎𝑔𝑒𝑠 + 𝛽4𝑗 ∗ 𝑊𝑜𝑟𝑑𝑡𝑦𝑝𝑒 ∗541 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑆𝑙𝑒𝑒𝑝𝑠𝑡𝑎𝑔𝑒𝑠                                                                                                          (2) 542 

For each model, we ran four MCMC chains with 5,000 samples each, discarding the first 500 543 

samples as a warm-up. We assessed model convergence using the Gelman–Rubin R-hat 544 

statistic, ensuring (R-hat < 1.1 ). Statistical inferences were based on the 95% Highest 545 

Density Interval (HDI) of the posterior distribution. Effects were considered significant if the 546 

95% HDI did not include 0. 547 

 548 

Data availability 549 

All data will be available on the Open Science Framework (OSF) upon publication: 550 

https://osf.io/r8szg/ 551 

Code availability 552 

reuse, remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted March 13, 2025. ; https://doi.org/10.1101/2025.03.10.642374doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.10.642374


 14 

All analysis codes will be accessible on the Open Science Framework (OSF) upon 553 

publication: https://osf.io/r8szg/ 554 

 555 

 556 
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 742 

Table S1 743 

Mean and SEM of trial numbers across sleep states and word types in HPs group 744 

 Healthy Group 

 Wake (Mean ± SE) N1(Mean ± SE) N2(Mean ± SE) 

Words 48.2 ± 7.92 5 ± 0.89 3 ± 0.59 

Pseudowords 46.7 ± 7.67 3.33 ± 0.44 2.77 ± 0.71 

 745 

Table S2 746 

Mean and SEM of trial numbers across sleep states and word types in NPs group 747 

 Individual with narcolepsy 

 Wake 

(Mean ± SE) 

N1 

(Mean ± SE) 

N2 

(Mean ± SE) 

REM 

(Mean ± SE) 

Lucid REM 

(Mean ± SE) 

Words 26.4 ± 5.79 9.04 ± 1.68 8.92 ± 9.17 12.2 ± 3.97 14.4 ± 2.15 

Pseudowords 27.1 ± 5.94 8.69 ± 1.53 9.17 ± 1.78 11.6 ± 3.64 15.5 ± 2.24 

 748 
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 750 

Figure 1. Experiment Design A. Experimental Procedure. Participants performed a lexical 751 

decision task during daytime nap sessions, responding to spoken stimuli (words or 752 

pseudowords) with facial muscle contractions. Responses involved either frowning 753 

(corrugator muscle contractions) or smiling (zygomatic muscle contractions), with the 754 

muscle-response mapping counterbalanced across participants. Participants with narcolepsy 755 

(NP) completed five 20-minute naps, interspersed with 80-minute breaks, while healthy 756 

participants (HP) underwent a single 100-minute nap. Example EMG traces illustrate 757 

corrugator and zygomatic responses during wakefulness and REM sleep in NPs. Each 758 

participant was exposed to pseudorandomized auditory stimuli, ensuring no stimulus 759 

repetition across trials. B. Drift Diffusion Model (DDM) Schematic. The DDM decomposes 760 

decision-making into distinct cognitive components: the starting point (z), representing pre-761 

decision bias; the drift rate (v), indicating the speed and quality of evidence accumulation; the 762 

decision threshold (a), reflecting the amount of evidence required to make a decision; and the 763 

non-decision time (t), encompassing processes unrelated to evidence accumulation (e.g., 764 

stimulus encoding, motor execution, and lexical access). The figure illustrates evidence 765 

accumulation over time, with green and purple traces representing correct and incorrect 766 

decisions, respectively. The model captures both trial-level response times and accuracy data. 767 

C. Hierarchical Bayesian HDDM Framework. A hierarchical Bayesian implementation of the 768 

DDM (HDDM) was used to estimate group- and participant-level parameters. Group-level 769 

parameters (mean, m, and variance, s) were estimated simultaneously with individual-level 770 

parameters (z, a, v, and t), accounting for trial-by-trial variations due to experimental factors 771 

(WT: word type; ST: sleep stages). At the trial level (T), parameters a, v, and t were 772 

modulated by word type (words vs. pseudowords) and sleep stages (wakefulness, N1, N2, 773 

REM, and lucid REM). Observed data (accuracy and reaction time) are represented as shaded 774 
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circles, while group and individual parameters are shown as unshaded circles within the 775 

nested plate structure. This hierarchical approach improves parameter estimation by 776 

leveraging shared information across participants. 777 

 778 

Figure 2. Lexical decision during wakefulness in both HP and NP.  779 

A, D. Behavioral Results: Response Accuracy and Reaction Time. Bayesian Linear Mixed 780 

Model (BLMM) results for lexical decisions in HP (left panels) and NP (right panels) during 781 

wakefulness. The x-axis represents the estimated mean for response accuracy (top) and 782 

reaction time (bottom). Light blue lines indicate the 95% Highest Density Interval (HDI) for 783 

pseudowords, and green lines indicate words. The purple line represents the posterior 784 

distribution of the contrast between words and pseudowords. If the purple line overlaps with 785 
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0 (gray vertical line), no significant difference is observed between words and pseudowords. 786 

Conversely, if the purple line does not overlap with 0, this indicates a significant difference 787 

between the two stimulus types. B, E. Drift Rate (v). Posterior distributions of drift rates for 788 

words (green) and pseudowords (light blue) during wakefulness in HP (left panels) and NP 789 

(right panels). The left panels show the posterior distributions for each word type, while the 790 

right panels display the posterior distribution of the contrast between words and 791 

pseudowords. The horizontal black lines represent the 95% HDI, and the vertical gray line (0) 792 

indicates the null hypothesis. Drift rate measures the speed and quality of evidence 793 

accumulation; a contrast excluding 0 indicates a significant difference in drift rates between 794 

words and pseudowords. C, F. Non-Decision Times (t). Posterior distributions of non-795 

decision times for words (green) and pseudowords (light blue) in HP (left panels) and NP 796 

(right panels). Non-decision time reflects processes outside the evidence accumulation phase, 797 

such as sensory encoding and motor preparation. The left panels show the posterior 798 

distributions for each word type, while the right panels display the posterior distribution of 799 

the contrast between words and pseudowords. Horizontal black lines represent the 95% HDI, 800 

and vertical gray lines denote 0. If 0 is excluded from the 95% HDI, this indicates a 801 

significant difference in non-decision times between words and pseudowords.  802 

 803 

reuse, remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted March 13, 2025. ; https://doi.org/10.1101/2025.03.10.642374doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.10.642374


 25 

 804 

Figure 3. Mechanism of lexical decision during N1 and lucid REM sleep.  805 

(A, C) BLMM results for response accuracy and reaction time in lexical decisions during N1 806 

sleep and lucid REM sleep in participants with narcolepsy. The N1 sleep results for healthy 807 

participants exhibited the same behavioral pattern and computational mechanisms as in 808 

participants with narcolepsy and are presented in Figure S2. The X-axis represents the 809 

estimated mean response accuracy or reaction time. The light blue line indicates the 95% 810 

Highest Density Interval (HDI) of the posterior probability for pseudowords, while the green 811 

line represents words. The purple line denotes the contrast between words and pseudowords. 812 

If the purple line overlaps with 0 (gray vertical line), there is no significant difference 813 

between words and pseudowords. If the purple line does not overlap with 0, it indicates a 814 

significant difference between words and pseudowords. (B, D) Posterior distributions of non-815 

decision times, drift rate, and decision threshold for words and pseudowords during N1 and 816 
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lucid REM sleep, along with their contrasts. The left panels show the fitted posterior 817 

distributions for words and pseudowords. The right-side histogram plots display the contrasts 818 

between words and pseudowords, with horizontal black lines representing the 95% HDI and 819 

vertical gray lines denoting 0. If 0 is not within the 95% HDI, the difference is considered 820 

statistically significant.  821 

 822 

 823 

 824 

 825 

 826 

Figure 4. Robust word processing and impaired pseudoword processing during N1 sleep 827 

Posterior distributions of decision parameters for words and pseudowords in the HP group, 828 

comparing wakefulness and N1 sleep. The NP group exhibited a similar pattern, with 829 

selective impairment in pseudoword processing during sleep (see Results). Panels depict (A) 830 

non-decision time, (B) drift rate, and (C) decision threshold. Asterisks (*) indicate significant 831 

differences, where the posterior distribution contrast between wakefulness and N1 sleep does 832 

not overlap with 0. "n.s." denotes non-significant differences, where the posterior distribution 833 

contrast overlaps with 0. 834 
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 836 

Figure 5. Slower and less efficient lexical decisions during lucid REM sleep  837 

Posterior distributions of decision parameters for words and pseudowords in the NP group, 838 

comparing lucid REM sleep, wakefulness, and N1 sleep. Parameters include (A) non-decision 839 

time, (B) drift rate, and (C) decision threshold. Here, we specifically compare lucid REM 840 

sleep with wakefulness and N1 sleep, while results for N1 vs. wakefulness are reported in the 841 

Results section. Asterisks (*) denote significant differences, where the posterior distribution 842 

contrast does not overlap with 0. "n.s." indicates non-significant differences, where the 843 

posterior distribution contrast overlaps with 0. 844 
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 849 

Figure S1. Differences in Reaction Time between Words and Pseudowords across 850 

wake/sleep stages in Healthy Participants (HP) and Participants with Narcolepsy (NP). This 851 

figure depicts the reaction time differences for words and pseudowords, considering both 852 

correct and incorrect responses. The X-axis denotes the estimated mean of reaction time. The 853 

light blue line represents the 95% Highest Density Interval (HDI) of the posterior probability 854 

for pseudowords, while the green line represents words. The purple line indicates the contrast 855 

between words and pseudowords. If the purple line overlaps with the 0 (gray line), it suggests 856 

no significant difference between words and pseudowords. Conversely, if the purple line does 857 

not overlap with 0, it indicates a significant difference between words and pseudowords. 858 

 859 

 860 
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Figure S2 Mechanism of lexical decision during N1 in healthy participants.  862 

(A)BLMM results for response accuracy and reaction time in lexical decisions during N1 863 

sleep in healthy participants. The X-axis represents the estimated mean response accuracy or 864 

reaction time. The light blue line indicates the 95% Highest Density Interval (HDI) of the 865 

posterior probability for pseudowords, while the green line represents words. The purple line 866 

denotes the contrast between words and pseudowords. If the purple line overlaps with 0 (gray 867 

vertical line), there is no significant difference between words and pseudowords. If the purple 868 

line does not overlap with 0, it indicates a significant difference between words and 869 

pseudowords. (B, C, D) Posterior distributions of non-decision times, drift rate, and decision 870 

threshold for words and pseudowords during N1 and lucid REM sleep, along with their 871 

contrasts. The left panels show the fitted posterior distributions for words and pseudowords. 872 

The right-side histogram plots display the contrasts between words and pseudowords, with 873 

horizontal black lines representing the 95% HDI and vertical gray lines denoting 0. If 0 is not 874 

within the 95% HDI, the difference is considered statistically significant.  875 
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 877 

Figure S3 Absence of lexical decision-making during N2 sleep (HP & NP) and non-lucid 878 

REM sleep (NP) 879 

(A, B, I) Response accuracy and reaction time during N2 and non-lucid REM sleep. The X-880 

axis shows mean accuracy and reaction time. The light blue and green lines represent 881 
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pseudowords and words, respectively. The purple line indicates the difference between them. 882 

If the purple line overlaps with 0 (gray vertical line), there is no significant difference. 883 

(B, C, D, E, F, G, H, J) Distributions of non-decision time, drift rate, and decision threshold. 884 

Left panels show results for words and pseudowords. Right panels display their differences, 885 

with black lines marking the 95% HDI and the gray vertical line indicating 0. If 0 is within 886 

the 95% HDI, there is no significant difference, confirming that lexical decision-making is 887 

absent in these states. 888 
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